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a b s t r a c t

The factorial design of experiments and desirability function approach has been applied for multi-
response optimization in pervaporation separation process. Two organic aqueous solutions were
considered as model mixtures, water/acetonitrile and water/ethanol mixtures. Two responses have been
employed in multi-response optimization of pervaporation, total permeate flux and organic selectivity.
The effects of three experimental factors (feed temperature, initial concentration of organic compound
in feed solution, and downstream pressure) on the pervaporation responses have been investigated. The
experiments were performed according to a 23 full factorial experimental design. The factorial models
have been obtained from experimental design and validated statistically by analysis of variance (ANOVA).
The spatial representations of the response functions were drawn together with the corresponding con-
actorial design of experiments
ervaporation

tour line plots. Factorial models have been used to develop the overall desirability function. In addition,
the overlap contour plots were presented to identify the desirability zone and to determine the optimum
point. The optimal operating conditions were found to be, in the case of water/acetonitrile mixture, a feed
temperature of 55 ◦C, an initial concentration of 6.58% and a downstream pressure of 13.99 kPa, while for
water/ethanol mixture a feed temperature of 55 ◦C, an initial concentration of 4.53% and a downstream
pressure of 9.57 kPa. Under such optimum conditions it was observed experimentally an improvement

e flux
of both the total permeat

. Introduction

Nowadays there are increased concerns of the pollution of
roundwater and surface water with volatile organic compounds
VOCs). This type of organic contaminants leak from under-
round storage tanks, municipal and industrial land-fill sites, or
re released from industrial and municipal wastewaters [1]. The
otential presence of VOCs in natural and drinking waters has led
overnment agencies to oblige to severe regulations and to impose
he treatment of VOCs polluted waters as an imperative solution.

According to EC Directive 1999/13/EC (Solvent Emissions Direc-
ive), VOCs are functionally defined as organic compounds having
t 293.15 K (i.e. 20 ◦C) a vapor pressure of 0.01 kPa or more, or hav-
ng a corresponding volatility under particular conditions of use.

OCs may be defined as organic compounds having an initial boil-

ng point lower than or equal to 250 ◦C at atmospheric pressure (EC
irective 2004/42/EC).

∗ Corresponding author. Tel. +34 91 3945185; fax. +34 91 3945191.
E-mail address: khayetm@fis.ucm.es (M. Khayet).

304-3894/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
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and selectivity.
© 2008 Elsevier B.V. All rights reserved.

Ethanol and acetonitrile are typical VOCs having boiling points
of 65 ◦C (ethanol) and 82 ◦C (acetonitrile) and a vapor pres-
sure of 5.85 kPa (ethanol) and 9.54 kPa (acetonitrile) at 20 ◦C.
According to Zhang et al. [2] ethanol is rapidly replacing methyl
tert-butyl ether (MTBE), which is widely used as fuel oxygenate.
Therefore, ethanol releases from spills and leaky underground
storage tanks should be anticipated. Such incidents are expected
to increase with the growing use of ethanol instead of MTBE as
fuels oxygenate. It is worth quoting that ethanol has received
little attention as a potential groundwater contaminant and
studies concerning removal of ethanol from water are of real
interest.

The primary use of acetonitrile compound was as an extracting
solvent for unsaturated hydrocarbons (especially butadiene) and in
general as solvent for many compounds including fatty acids and
oils based on its selective miscibility. Nowadays, acetonitrile is used
as a solvent in the production of pharmaceuticals, perfumes, vita-

min B, pesticides, and plastics. It is also used in the photographic
and textile industry, in the extraction and refining of copper, for
the production of lithium batteries, for the extraction of fatty acids
from animal and vegetable oils, and in analytical chemistry lab-
oratories [3]. Acetonitrile is toxic to humans and may enter the

http://www.sciencedirect.com/science/journal/03043894
http://www.elsevier.com/locate/jhazmat
mailto:khayetm@fis.ucm.es
dx.doi.org/10.1016/j.jhazmat.2008.12.078
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Nomenclature

b0, bi, bij regression coefficients
b̄ vector (u × 1) of regression coefficients
C initial concentration of the organic compound in

feed (wt%)
d individual desirability function
dJ individual desirability function corresponding to the

total permeate flux
da individual desirability function corresponding to

selectivity
D overall desirability function
DF number of degrees of freedom
F-value ratio of variances
g weight factor
h interval of variation
i, j subscripts (integer variables)
J total permeate flux (10−4 kg/m2·s)
JA total permeate flux for W/A mixture
ĴA predictor of total permeate flux for W/A mixture
JE total permeate flux for W/E mixture
ĴE predictor of total permeate flux for W/E mixture
k subscript (integer variable)
m number of responses
MS mean square
n number of designed variables
N number of experimental runs
P downstream pressure (kPa)
R2 coefficient of multiple determination
R2

adj adjusted statistic coefficient
SS sum of squares
T feed temperature (◦C)
wo weight fraction of organic compound in feed solu-

tion
wq weight fraction of water in feed solution
x1, x2, x3 coded levels of factors
x̄ vector (n × 1) of coded variables
¯̄x matrix (N × u) of the designed variables levels
y response
ŷ predictor of the response
ȳ vector (n × 1) of the response
yi

− lower tolerance limit of response
yi

+ upper tolerance limit of response
z actual value of designed variable
z0 center point of designed variable (actual value)
* superscript indicating optimal values of variables

Greek letters
˛ organic selectivity
˛A organic selectivity for W/A mixture
ˆ̨ A predictor of organic selectivity for W/A mixture
˛E organic selectivity for W/E mixture
ˆ̨ E predictor of organic selectivity for W/E mixture
˝ valid region (region of experimentation)
˝R desirability zone (region of interest)

Abbreviations
ANOVA Analysis of variances
DoE Design of experiments
FFD Full factorial design
LTB Larger-the-best, type of desirability function
MTBE Methyl tert-butyl ether
MLR Multi-linear regression method

NTB Nominal-the-best, type of desirability function
PV Pervaporation
RSM Response surface methodology
STB Smaller-the-best, type of desirability function
VOCs Volatile organic compounds
W/A Water/acetonitrile mixture
W/E Water/ethanol mixture
environment through industrial effluent streams, municipal waste
treatment plant discharges or spills.

Current technology for the removal of volatile contaminants
includes air stripping combined with adsorption onto activated
carbon or catalytic oxidation. For higher concentration of VOCs,
the cost of disposal/regeneration of the activated carbon becomes
quite expensive. Regarding catalytic oxidation, this process is
limited only to few systems owing to the problems of catalyst
deactivation and poisoning [4]. In the last few decades, mem-
brane separation processes have become more attractive for VOCs
removal from aqueous feed solutions [1]. For example, vacuum
membrane distillation has been tested for the removal of VOCs
from water [5–8]. Furthermore, pervaporation has been proved
as a promising separation process for VOCs removal from aque-
ous feed solution using different types of membranes [5,9–18]
and has the potential to be one of the most common tech-
niques in environmental engineering for water purification. The
performance of both separation processes, i.e. pervaporation (PV)
and vacuum membrane distillation (VMD) has been compared
for the separation of chloroform(VOC)/water mixtures [5,19]. In
addition to VOCs removal from wastewaters, the most impor-
tant applications of pervaporation are dehydration of solvents
or organic compounds [20–23] and organic/organic separations
[24–29].

One of the common experimentation approaches employed by
many scientists and engineers in the field of membrane science
and technology is One-Variable-At-a-Time (OVAT) methodology,
where one of the variables is varied while others are fixed. Such
approach depends upon experience, guesswork and intuition for
its success. In addition, this type of experimentation method-
ology demands wide resources to obtain a limited amount of
knowledge about the process. OVAT experimentation method-
ology is often unreliable, inefficient, time consuming, and may
yield to a false optimum condition for the investigated pro-
cess [30]. On the contrary, the statistical tools like design of
experiments (DoE) and response surface methodology (RSM) per-
mit the investigation of the process via simultaneous changing
of factors’ levels using reduced number of experimental runs.
Such approach plays an important role in designing and con-
ducting experiments as well as analyzing and interpreting the
obtained data. These tools present a collection of mathemati-
cal and statistical methods that are applicable for modeling and
optimization analysis in which a response or several responses
of interest are influenced by various designed variables (factors)
[33].

DoE and RSM have been proven to be effective statistical tools
for the modeling and optimization of the separation processes in

the field of membrane technology [32–35].

The objective of the present study is to optimize the pervapo-
ration operating conditions in order to enhance both membrane
selectivity and total permeate flux (PV performance) using desir-
ability function approach.
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Table 1
Actual and coded values of independent variables used for experimental design.

Variable Symbol Real values of coded levels
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ownstream pressure, P (kPa) x3

. Experimental

.1. Materials

The PV experiments were carried out using binary aqueous solu-
ions containing ethanol and acetonitrile. Ethanol and acetonitrile
hemicals used in all experiments were of analytical grade pur-
hased from POCH Company (Poland). Distilled water has been used
n all feed mixtures. The commercial polymeric composite flat-
heet membrane supplied by Sulzer Chemitech GmbH Company
ith the trade name PervapR 4060 has been used in the present

tudy.

.2. Pervaporation set-up and procedure

Pervaporation experiments were carried out using a laboratory
cale pervaporation system detailed elsewhere [36]. The feed cham-
er of the PV set-up was maintained at a temperature (ranging
etween 30 and 55 ◦C) by means of a thermostat. The feed stream,
omposed of water/acetonitrile (W/A) or water/ethanol (W/E) mix-
ures with the organic compound concentration ranging from 1
o 10 wt%, was brought in direct contact with the upstream side
f the membrane. In all experiments the stirring rate of the feed
olution was kept constant at high level to guarantee a turbulent
ow pattern. The permeate was collected in liquid nitrogen cold
raps and the total permeate fluxes were determined by measuring
he weight of the collected liquid in a certain time. The pressure
t the downstream side of the membrane was held in the range of
–27 kPa using a vacuum pump. The effective membrane area of the
V system was 88.22 × 10−4 m2. The feed and permeate composi-
ions were analyzed by measuring their refractive index by means
f a refractometer (RUDOLPH RESEARCH J357). The performance of
he PV membrane has been indicated by the total permeate flux (J)
nd the organic selectivity (˛) defined in Eq. (1) [18].

(wo/wq)permeate
=
(wo/wq)feed

(1)

here wi and wj are the weight percentages of components “o” and
q” respectively. The subindex “o” refers to the organic component
hile “q” refers to water component.

able 2
ull 23 factorial design of PV experiments.

un Input variables

Feed temperature Organic concentration Downstream

J ˛ J
T (◦C) Level x1 C (wt%) Level x2 P (kPa) L

1 55 1 10 1 26.66
2 30 −1 10 1 26.66
3 55 1 1 −1 26.66
4 30 −1 1 −1 26.66
5 55 1 10 1 5.34 −
6 30 −1 10 1 5.34 −
7 55 1 1 −1 5.34 −
8 30 −1 1 −1 5.34 −
9 42.5 0 5.5 0 16

10 42.5 0 5.5 0 16
30 42.5 55
1 5.5 10
5.34 16 26.66

3. Results and discussions

3.1. Pervaporation experimental design

The design of PV experiments combined with RSM is of great
interest since such experimental-statistical tools permit to reduce
the number of experimental runs and to investigate the interac-
tion effects between the designed variables (factors). Therefore, this
methodology was employed for the investigation and optimization
of both water/acetonitrile (W/A) and water/ethanol (W/E) perva-
poration systems. As stated earlier, the aim of optimization was to
improve the performance of PV separations by maximizing the val-
ues of two responses, i.e. total permeate flux (J) and selectivity (˛).
The key variables that affect the responses were selected by per-
forming preliminary tests. These variables are the feed temperature
(T), the initial organic compound concentration of the feed stream
(C) and the downstream pressure (P). For statistical calculations the
actual variables were coded according to Eq. (2).

xi = zi − z0
i

hi
∀i = 1, n (2)

where z denotes the actual value of the designed variable, z0 is the
center point of the designed variable (actual value), h is the interval
of variation, x is the coded level of the designed variable (dimen-
sionless value) and n is the number of variables. Thus, each variable
has two different coded levels from low (±1) to high (1). A center
point was also added to the design for the ease of statistical anal-
ysis. Table 1 presents the independent variables with the actual
operating range of each variable and corresponding coded levels.

The experimental design adopted in this study consisted of 8
factorial points (full factorial design) and 2 center points (for repli-
cation). The full factorial design is a set of experimental runs where
each level of the designed variable is investigated at both levels (+1)

and (−1) of all the other factors. It is an orthogonal design, which
allows the estimation of a factor effect independently of all other
effects. Table 2 shows the full factorial design of the PV experiments
and the values of two observed responses (J and ˛) for both mixtures
water/acetonitrile and water/ethanol.

Responses

pressure Water/acetonitrile Water/ethanol

˛
evel x3 JA 10−4 kg/m2s ˛A JE 10−4 kg/m2s ˛E

1 4.082 11.023 0.954 11.414
1 1.025 9.812 0.202 9.696
1 0.372 66.787 0.344 21.639
1 0.202 15.795 0.131 9.139
1 6.886 11.195 3.309 8.807
1 2.983 11.327 1.138 4.388
1 2.392 21.458 2.107 10.714
1 0.427 16.393 0.795 3.627
0 1.453 20.246 0.630 9.058
0 1.404 20.642 0.664 8.804
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Table 3
ANOVA table for factorial models.

Source DFa SSb MSc F-value R2 R2
adj

Water/acetonitrile mixture, response: (JA)
Model 7 37.633 5.376 7.137 0.962 0.827
Residual 2 1.507 0.753
Total 9 39.14
Water/acetonitrile mixture, response: (˛A)
Model 7 2557.09 365.3 9063.9 0.9999 0.9998
Residual 2 0.081 0.04
Total 9 2557.17
Water/ethanol mixture, response: (JE)
Model 7 8.219 1.174 5.044 0.946 0.759
Residual 2 0.466 0.233
Total 9 8.685
Water/ethanol mixture, response: (˛E)
Model 7 210.981 30.14 20.513 0.986 0.938
Residual 2 2.939 1.469
Total 9 213.92
C. Cojocaru et al. / Journal of Ha

.2. Factorial modeling and analysis

Based on experimental design matrix (Table 2) the factorial
odels were developed to ascertain the relationship between

esponses and factor effects. According to this method, a response y
s set as a functional relationship of the designed variables (factors)
nd for a full factorial design the effects of factors may be estimated
y linear regression model with interactions:

ˆ = b0 +
n∑

i=1

bixi +
n∑

1≤i<j

bijxixj +
n∑

1≤i<j<k

bijkxixjxk (3)

here ŷ is the predictor of the response, b0, bi, and bij are the
egression coefficients and i, j, and k denote the integer positive
ariables.

In order to ascertain the regression coefficients of the facto-
ial model, Eq. (3), the multi-linear regression (MLR) method was
mployed. According to this method the least square estimations
f the regression coefficients can be written as [31,37–39]:

¯ =
(

¯̄x
T ¯̄x

)−1
¯̄x

T
ȳ (4)

here b̄ is a (u × 1) vector of regression coefficients, ¯̄x is a (N × u)
atrix of the independent variables levels, ȳ is a (N × 1) vector of the

esponse (experimental values), N is the number of experimental
uns and u is the number of regression coefficients that appear in
actorial model. According to the experimental design presented in
able 2, the interaction models were established for each case and
or each response (J and ˛), which may be written in terms of coded
actors as follows:

For water/acetonitrile (W/A) mixture:

ĴA = 2.296 + 1.137x1 + 1.448x2 − 0.876x3 + 0.603x1x2

− 0.33x1x3 − 0.315x2x3 + 0.119x1x2x3 (5)

ˆ̨ A = 20.473 + 7.142x1 − 9.634x2 + 5.38x3 − 6.872x1x2

+ 5.908x1x3 − 5.802x2x3 + 5.573x1x2x3 (6)

For water/ethanol (W/E) mixture:

ĴE = 1.1225 + 0.5560x1 + 0.2783x2 − 0.7148x3 + 0.1748x1x2
− 0.3148x1x3 − 0.1080x2x3 − 0.04x1x2x3 (7)

ˆ̨ E = 9.9279 + 3.2154x1 − 1.3519x2 + 3.0439x3 − 1.6814x1x2

− 1.0654x2x3 − 1.0144x1x2x3 (8)

Fig. 1. Experimental data versus predicted values by f
a DF: degrees of freedom.
b SS: sum of squares.
c MS: mean square.

The design variables that appear in regression Eqs. (5)–(8) are
subjected to the following constraints:

xi ∈ ˝; ˝ = {xi| − 1 ≤ xi ≤ +1}; ∀i = 1, 3

where x1, x2 and x3 denote the coded levels of the designed variables
(factors) and ˝ is the valid region (region of experimentation). It
should be mentioned that all regression coefficients retained in Eqs.
(5)–(8) are the significant ones, i.e. the significance of each individ-
ual regression coefficient has been tested by means of Student’s
t-test [37].

The analysis of variance (ANOVA) was used to verify the statis-
tical significance of the interaction models. The F-value, which is a
measure of the variance of the data to the mean, was determined
based on the ratio of mean square of group variance due to the
error [31]. The greater is the F-value from unity, the more certain
is that the designed variables (factors) adequately explain the vari-
ation in the mean of the data. The ANOVA results are presented
in Table 3 for all interaction models. The ANOVA table summa-
rizes the sum of squares of residuals and regressions together with
the corresponding degrees of freedom, F-value and ANOVA coeffi-
cients (i.e. coefficients of multiple determination R2 and adjusted

R2

adj statistic). The mathematical expressions used for the calcu-

lation of the ANOVA estimators (i.e. SS, MS, F-value, R2, R2
adj) are

widely presented in the literature concerning the response surface
methodology [31,37]. According to ANOVA table, the F-value is quite

actorial models, water/acetonitrile PV mixture.
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Fig. 2. Experimental data versus predicted va

igh and the R2 values are close to 1, which is acceptable. In addition,
he predicted R2 is in agreement with the adjusted coefficients of
etermination, R2

adj. All these statistical estimators reveal that inter-
ction factorial models are statistically accepted for the prediction
f the two responses in the considered range of experimentation
valid region).
The comparison of the predicted and experimental responses is
hown in Figs. 1 and 2 against the observation order (i.e. the number
f experimental run N). The results reported in Figs. 1 and 2 show
goodness-of-fit between interaction factorial models and the cor-

esponding experimental set of data. As can be observed in Fig. 1

ig. 3. Response surface plots and contour plots showing the effect of organic compound c
ermeate flux (J) at P = 16 kPa. (a) Water/acetonitrile PV mixture. (b) Water/ethanol PV mi
y factorial models, water/ethanol PV mixture.

(W/A mixture), for both models the predicted data are identical to
the experimental ones for the orthogonal points (1–8). In the cen-
ter points (9–10) the discrepancy between the predicted and the
experimental data is visible only for the total permeate flux model.
This means that the regression equation for the permeate flux JA
does not describe very well the response in the center point. This
behavior can be attributed to the orthogonal property of the facto-

rial design. However, based on the ANOVA statistical test the overall
prediction is considered satisfactory. For the selectivity the inter-
action model predicts very well the response in all points including
the center points. According to Fig. 2 (W/E mixture) the goodness-

oncentration (wt%), feed temperature (◦C) and their mutual interaction on the total
xture.
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ig. 4. Response surface plots and contour plots showing the effect of organic com
he total permeate flux (J) at T = 42.5 ◦C. (a) Water/acetonitrile PV mixture. (b) Wate

f–fit is the best for the orthogonal points while for the central
oints the residual error is slightly larger.

It should be noted here that the factorial models in terms of the
oded variables, i.e. Eqs. (5)–(8), are more useful for optimization
ince the valid region for each individual coded variable is in fact
he same interval of variation, i.e. from −1 to +1. For graphical rep-
esentation and analysis of response surface, the factorial models
n terms of coded variables are converted to empirical models in
erms of actual variables. The empirical coefficients for regression
quations in terms of actual factors have been computed by means
f substitution technique. Thus, the factorial models converted in
erms of actual variables may be written for each case as follows:

For water/acetonitrile mixture:

ĴA = −2.52 + 0.089T + 0.106C + 0.105P + 7.56 × 10−3TC

− 3.565 × 10−3TP − 0.015CP + 1.98 × 10−4TCP (9)

ˆ̨ A = 25.6 − 0.284T − 1.333C − 2.887P + 0.027TC + 0.095TP

+ 0.274CP − 9.294 × 10−3TCP (10)

For water/ethanol mixture:

ĴE = −1.113 + 0.065T − 0.034C + 0.046P + 3.108 × 10−3TC
− 2.362 × 10−3TP − 2.251 × 10−3CP (11)

ˆ̨ E = −6.535 + 0.273T + 0.175C + 0.012P − 2.824 × 10−3TC

+ 9.304 × 10−3 TP + 0.05CP − 1.692 × 10−3TCP (12)
concentration (wt%), downstream pressure (kPa) and their mutual interaction on
nol PV mixture.

where the experimental factors are subjected to the following
constraints (experimental region):

30 ≤ T ≤ 55(◦C); 1 ≤ C ≤ 10(wt%); 5.34 ≤ P ≤ 26.66 (kPa)

The MATLAB program was employed to visualize the three
dimensional (3D) response surfaces and the corresponding con-
tour plots of the total permeate flux, J (Figs. 3–5) and selectivity ˛
(Figs. 6–8) with the independent designed variables. The response
plots for both mixtures are presented with the vertical axes showing
the responses and each of the two horizontal axes represent-
ing two designed variables keeping the third variable at constant
level (central level). For a first-order interaction model, when the
interaction effect between factors is negligible then the response
surface is a plane and the corresponding contour plot contains
parallel straight lines. If the interaction effect is significant then
the plane becomes “twisted”. This twisting of the response sur-
face results in curved contour lines of constant response in the
plane of the designed variables. Thus, the interaction effect is
a form of curvature in the underlining factorial model for the
experiment [31].

The response surface plots and contour plots of the total perme-
ate flux are presented in Figs. 3–5 for both PV systems (W/A and
W/E). These plots reveal that the increase of feed temperature and
initial organic compound concentration lead to an increase of the

total permeate flux. In contrast, the increment of the downstream
pressure decreases this response.

In the case of W/A mixture, the main effect of the initial organic
compound concentration is the highest one, followed by that of
feed temperature. The main effect of the downstream pressure is
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ig. 5. Response surface plots and contour plots showing the effect of downstream
ux (J) at C = 5.5%. (a) Water/acetonitrile PV mixture. (b) Water/ethanol PV mixture.

maller in this case than that of feed temperature. On the contrary,
or W/E mixture, the main effect of the downstream pressure on the
otal permeate flux is higher than that of the feed temperature. For
his last mixture (W/E) the main effect of the organic compound
oncentration has the smallest impact upon the total permeate
ux.

As far as the interaction effects between the design variables
factors) are concerned, it was observed the following. In the case
f W/A mixture, the strongest interaction effect appears between
he feed temperature and the initial organic compound concentra-
ion (Fig. 3a). According to Fig. 3a, the effect of the feed temperature
s more significant at higher organic compound concentrations
nd the effect of the initial organic compound concentration is
reater at higher feed temperatures. As it is shown in Fig. 4a,
he interaction effect between the downstream pressure and the
nitial organic compound concentration is the reduced one. Also,
ig. 5a shows a moderate interaction effect between the down-
tream pressure and the feed temperature indicating that the
ffect of the feed temperature is greater at lower downstream
ressures.

For W/E mixture, the interaction effect between the feed tem-
erature and the initial organic compound concentration is not so
trong as it is for W/A mixture, but it should be taken into account
ince the curved contour lines are apparent as can be observed in
ig. 3b. In this case, the feed temperature seems to be more sig-

ificant at high initial organic concentration and vice versa. From
ig. 4b it is clear that the interaction effect between the downstream
ressure and the initial organic compound concentration is not sig-
ificant. The interaction effect between the downstream pressure
nd the feed temperature (Fig. 5b) is the most relevant interaction
re (kPa), feed temperature (◦C) and their mutual interaction on the total permeate

effect for W/E mixture. Thus, the influence of the feed tempera-
ture is more significant at lower values of the downstream pressure
while the influence of the downstream pressure is more relevant
for higher feed temperatures. Regarding the interaction between
all factors (i.e. T–C–P) and its influence on the total permeate flux it
should be mentioned that such interaction is greater in the case of
W/A mixture compared to W/E mixture.

In Figs. 6–8 the graphical response surface analysis indicates
that the increase of both the feed temperature and the downstream
pressure conducts to an enhancement of the organic selectivity. In
contrast, the increase of the initial organic compound concentration
decreases this response for both mixtures.

In the case of W/A mixture, the most important main effect
upon selectivity is attributed to the initial organic compound
concentration, followed by the main effect of the feed temper-
ature. Regarding the influence of the downstream pressure, the
main effect of this factor is lower than the effect of the feed
temperature.

In the case of W/E mixture, the main effect of the initial organic
compound concentration is much smaller than the main effects of
the feed temperature and the downstream pressure.

Concerning the interactions between the designed variables and
their mutual effects upon the organic selectivity, in the case of W/A
mixture, the interaction effects between the designed factors are
significant and are similar in magnitude for all interactions, i.e.

T–C, T–P and C–P. For example in Fig. 6a, the interaction effect
between the feed temperature and the organic compound concen-
tration is shown. According to this interaction the influence of the
feed temperature is more important at low organic concentration
values, while the effect of the organic concentration is more sig-
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ig. 6. Response surface plots and contour plots showing the effect of organic com
rganic selectivity at P = 16 kPa. (a) Water/acetonitrile PV mixture. (b) Water/ethano

ificant at high temperature. Fig. 7a reveals the interaction effect
etween P and C factors. The influence of the downstream pressure
pon selectivity is more considerable for low values of organic com-
ound concentration. In contrast, the effects of the initial organic
ompound concentration are significant at high values of the down-
tream pressure. Interaction effects appear also between the factors
and P as can be seen in Fig. 8a. The effect of the downstream

ressure is significant at high levels of feed temperature. For low
alues of feed temperature the influence of the downstream pres-
ure is negligible. Moreover, the effect of the feed temperature is
onsiderable at high levels of the downstream pressure, while at
he low values of the downstream pressure the influence of the
eed temperature is reduced.

In the case of W/E mixture the interaction effect between the
eed temperature and the organic compound concentration (Fig. 6b)
s more pronounced than the interaction between the downstream
ressure and the organic compound concentration as can be seen

n Fig. 7b. Fig. 6b reveals that the effect of the feed temperature
pon the organic selectivity became more important at lower val-
es of organic concentration, whereas the influence of the organic
ompound concentration became more significant at higher values
f feed temperature. According to the interaction effects shown in
ig. 7b, the effect of the downstream pressure on organic selectivity
s greater at lower organic concentration values. Furthermore, the
ecrease of the organic selectivity with the increase of the organic
oncentration is observed at higher values of the downstream pres-

ure. Fig. 8b indicates that there is no interaction between the feed
emperature and the downstream pressure for W/E mixture.

Concerning the interaction effect between all factors (i.e. T–C–P)
pon the organic selectivity, it must be mentioned that it is
uch greater in the case of W/A mixture than for W/E mixture.
d concentration (wt%), feed temperature (◦C) and their mutual interaction on the
ixture.

The response surface analysis of both mixtures reveals that the
responses (J and ˛) are much higher for W/A mixture.

3.3. Response surface optimization using desirability function
approach

The response surface optimization discussed in this section
involves the analysis of two pervaporation responses, namely, the
total permeate flux (J) and the organic selectivity (˛). These two
responses are of practical importance, since as usual they are in
conflict with each other. For example, the results listed in Table 2
reveal that the higher values of the total permeate flux do not
involve at the same time the higher values of the organic selec-
tivity. Therefore it is necessary to find out the optimal point as a
compromise between the higher total permeate flux and selectivity.
A useful approach to solve a multiple response optimization prob-
lem is to use the simultaneous optimization technique proposed by
Derringer and Suich [40]. This computation procedure involves the
desirability functions. According to this approach, each predictor of
response ŷi (x̄) is firstly converted to an individual desirability func-
tion (di) that varies over the range 0 ≤ di ≤ 1. There are three forms
of the desirability function depending on response’s characteris-
tic [40–43]: (1) the-larger-the-best (LTB-type) – for an objective
function to be maximized; (2) the-smaller-the-best (STB-type) – for
an objective to be minimized; and (3) the-nominal-the-best (NTB-
type) – for an objective function required to achieve a particular

target.

In our specific case, both responses (i.e. total permeate flux
and selectivity) should be maximized. Therefore, the corresponding
individual desirability functions are the-larger-the-best (LTB-type).
The individual desirability function LTB-type can be written in a
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eneral form as:

i(ŷi (x̄)) =

⎧⎪⎪⎨
⎪⎪⎩

0, if ŷi (x̄) ≤ y−
i(

ŷi (x̄) − y−
i

y+
i

− y−
i

)g

, if y−
i

≤ ŷi (x̄) ≤ y+
i

1, if ŷi (x̄) > y+
i

(13)

here yi
− presents the lower tolerance limit of the response, the

i
+ presents the upper tolerance limit of the response and the

uperindex g represents the weight factor.
In a multi-response situation, the ideal case is when each indi-

idual desirability function is unity (=1). In this case, the overall
esirability D is also equal to 1. In a real situation, we are inter-
sted in maximizing the overall desirability function D (x̄), which
ay be computed as geometric mean of the individual desirability

unctions di

(
ŷi (x̄)

)
as shown in the following equation [40–43]:

(x̄) =
[
d1

(
ŷ1 (x̄)

)
× d2

(
ŷ2 (x̄)

)
× · · · × dm

(
ŷm (x̄)

)]1/m
(14)

here m denotes the number of responses. Note that if an individual
esirability function is completely undesirable, i.e. di

(
ŷi (x̄)

)
= 0,

hen the overall desirability value is zero.
The desirability function approach applied in the present PV pro-

ess joins both responses (i.e. total permeate flux and selectivity)
n one overall desirability function that may be written in this case
s:

(x̄) =
√

dJ

(
Ĵ(x̄)

)
× d˛

(
ˆ̨ (x̄)

)
(15)
here D denotes the overall desirability function, x̄ is the vector of
he designed variables (coded values), i.e. x̄ = [x1 x2 x3]T, dJ is the
ndividual desirability function corresponding to the first response
i.e. total permeate flux), d˛ is the individual desirability function
concentration (wt%), downstream pressure (kPa) and their mutual interaction on
PV mixture.

corresponding to selectivity (second response), Ĵ is the predictor
of the total permeate flux given by the regression Eqs. (5) and (7),
ˆ̨ is the predictor of the organic selectivity given by the regression
Eqs. (6) and (8). Each individual desirability function has been com-
puted by means of Eq. (13) adopting a weight factor g = 0.5. In order
to ensure a desirability solution, the setting of lower and upper
tolerance limits is of great importance in evaluating the individ-
ual desirability functions. First, these limits were set by a detailed
inspection of the response data in Table 2. For example in the case
of W/A mixture, the maximal value of the total permeate flux is
6.886 kg/m2.s followed by the value 4.082 kg/m2.s (4.082 is the sec-
ond highest value of the total permeate flux shown in Table 2).
Therefore, the interval (i.e. lower and upper limits) selected to
ensure a desirability value of this response is 4.082 ≤ ĴA (x̄) ≤ 6.886.
The lower and upper tolerance limits of the other responses were
deduced in a similar way to ensure the desirability solutions. Thus,
the desirability domains of responses may be written in first phase
as:

- For water/acetonitrile (W/A) mixture:

4.082 ≤ ĴA (x̄) ≤ 6.886
21.458 ≤ ˆ̨ A (x̄) ≤ 66.787

(16)

- For water/ethanol (W/E) mixture:

2.107 ≤ ĴE (x̄) ≤ 3.309
11.414 ≤ ˆ̨ E (x̄) ≤ 21.639

(17)
The desirability intervals presented as constraint conditions (16)
and (17) were refined in the second phase by plotting the over-
lap contour lines for each response (Figs. 9 and 10). For example,
Fig. 9 shows the overlap plot of both responses (J and ˛) in the coor-
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inates P–C by maintaining the third variable (feed temperature)
t a constant level, i.e. T = 53 ◦C. By a strict inspection of the con-
our lines plotted in Fig. 9, one can see that there are no conditions
or P and C factors to satisfy the desirability defined in constraints
16) and (17). Furthermore, at lower values of the feed tempera-
ure (T < 53 ◦C) such conditions cannot be detected. The desirability

one, known also as region of interest ˝R ⊂ ˝, is visible at higher
alues of feed temperature (i.e. T > 53 ◦C). The desirability zone,
hich satisfies the restrictions (16) and (17), is indicated in yellow

olor for the highest feed temperature value (T = 55 ◦C). Therefore,
he optimal points are located in the desirability zones (yellow

Fig. 9. Contour response surfaces overlap plots for T = 53 ◦C. (a)
e (kPa), feed temperature (◦C) and their mutual interaction on the organic selectivity

zones in Fig. 10) and to determine their coordinates and to ensure
a high desirability, the constraints (16) and (17) must be refined.
According to the overlap plots presented in Fig. 10, the desirability
zone (region of interest, ˝R ⊂ ˝) is given by the following refined
constraints.
- For water/acetonitrile (W/A) mixture:

4.082 ≤ ĴA (x) ≤ 4.20
21.458 ≤ ˆ̨ A (x̄) ≤ 24.00

(18)

Water/acetonitrile mixture. (b) Water/ethanol mixture.
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Fig. 10. Contour response surfaces overlap plots for T = 55 ◦C. (a) Water/acetonitrile mixture. (b) Water/ethanol mixture.

Table 4
Optimal conditions for pervaporation of water/acetonitrile and water/ethanol mixtures.

Factors & responses Water/acetonitrile Water/ethanol

Factors Feed temperature *x1 (coded value) 1 1
*T (◦C) 55 55

Initial feed organic concentration *x2 (coded value) 0.2405 −0.2154
*C (wt%) 6.58 4.53

Downstream pressure *x3 (coded value) −0.1894 −0.6036
*P (kPa) 13.98 9.57

R Ĵ(
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-
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esponses Total permeate flux
Organic selectivity
Desirability function

For water/ethanol (W/E) mixture:

2.107 ≤ ĴE (x) ≤ 2.30
11.414 ≤ ˆ̨ E (x̄) ≤ 12.15

(19)

The desirability optimal solution in the case of W/A mixture
ust satisfy simultaneously both constraints upon ĴA (x̄) and ˆ̨ A (x̄)

efined by the inequalities (18). Similarly, the desirability optimal
olution in the case of W/E mixture must satisfy both restrictions
ndicated in Eq. (19). To find out the optimal solution localized in the
esirability zone ˝R ⊂ ˝, the overall desirability function approach
as employed and the constrained optimization problem was writ-

en as:

max
¯ ∈ ˝R

D (x̄) = max
x̄ ∈ ˝R

(√
dJ

(
Ĵ(x̄)

)
× d˛

(
ˆ̨ (x̄)

))
(20)

The optimization of the overall desirability function D involves
he maximization of both responses (J and ˛). The optimization
omputations have been performed by Monte Carlo stochastic sim-
lation method [38]. According to this method 104 points were
cattered randomly inside the region of interest. Each point corre-
ponds to a combination of the designed variables. The responses,
ux, selectivity and desirability function were computed for all 104

oints. The stochastic simulations were performed by multistage
pproach using a zoom-in technique in order to identify the optimal
egion more accurately. The stochastic simulations and zoom-in
echnique lead to determine the final Pareto optimal region. The
ensitivity analysis employed has revealed that the changes of

actors and the response functions along the Pareto front are not sig-
ificant. Therefore, the optimal solutions were computed as mean
alues of the factors from the Pareto optimal sets.

The results of the developed optimization are presented in
able 4 for both pervaporation mixtures, i.e. water/acetonitrile
∗x1, ∗x2, ∗x3) 4.164 2.188
(∗x1, ∗x2, ∗x3) 22.026 11.689
(Ĵ, ˆ̨ ) 0.6276 0.6299

(W/A) and water/ethanol (W/E). The optimal feed temperature of
both cases is T = 55 ◦C. The optimal solute concentration is 6.58 wt%
for W/A mixture and 4.53 wt% for W/E mixture. The optimal down-
stream pressure is 13.98 kPa for W/A mixture and 9.57 kPa for W/E
mixture. Under the optimal conditions of both mixtures, the val-
ues of the responses are the following. For W/A mixture, the total
permeate flux ĴA = 4.164 × 10−4 kg/m2 s and the organic selectiv-
ity is ˆ̨ A = 22.026%. This combination is the best one compared
with the data presented in Table 2. For W/E mixture, the total per-
meate flux is ĴE = 2.188 × 10−4 kg/m2 s and the organic selectivity
is ˆ̨ E = 11.689%. Again this combination is the best one compared
to the other combinations presented in Table 2 for ethanol–water
mixture.

To check experimentally the obtained optimal points, the
confirmation runs were carried out applying the PV opera-
tional conditions reported above. The values of the experimental
responses are the following.

- For W/A mixture, JA = 3.51 × 10−4 kg/m2 s and �A = 30.6%.
- For W/E mixture, JE = 2.02 × 10−4 kg/m2 s and �E = 13.14%.

As can be seen, the experimental values of the output responses
(J and ˛) obtained considering the obtained optimal conditions
represent the best (maximal) values throughout the all conducted
experimental tests summarized in Table 2. Therefore, by applying
the desirability function approach maximal output responses have
been predicted and confirmed experimentally.
4. Conclusions

In this study an optimization approach incorporating the fac-
torial modeling and analysis as well as the desirability function
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